Inhibition of hydrophobic protein-mediated Candida albicans attachment to endothelial cells during physiologic shear flow.
نویسندگان
چکیده
Adhesion interactions during hematogenous dissemination of Candida albicans likely involve a complex array of host and fungal factors. Possible C. albicans factors include changes in cell surface hydrophobicity and exposed antigens that have been shown in static adhesion assays to influence attachment events. We used a novel in vitro shear analysis system to investigate host-pathogen interactions and the role of fungal cell surface hydrophobicity in adhesion events with human endothelial cells under simulated physiologic shear. Endothelial monolayers were grown in capillary tubes and tested with and without interleukin-1 beta activation in buffered medium containing human serum. Hydrophobic and hydrophilic stationary-phase C. albicans yeast cells were infused into the system under shear flow and found to adhere with widely varying efficiencies. The average number of adherent foci was determined from multiple fields, sampled via video microscopy, between 8 and 12 min after infusion. Hydrophobic C. albicans cells demonstrated significantly more heterotypic binding events (Candida-endothelial cell) and greater homotypic binding events (Candida-Candida) than hydrophilic yeast cells. Cytokine activation of the endothelium significantly increased binding by hydrophobic C. albicans compared to unactivated host cells. Preincubation of hydrophobic yeast cells with a monoclonal antibody against hydrophobic cell wall proteins significantly blocked adhesion interactions with the endothelial monolayers. Because the antibody also blocks C. albicans binding to laminin and fibronectin, results suggest that vascular adhesion events with endothelial cells and exposed extracellular matrix may be blocked during C. albicans dissemination. Future studies will address the protective efficacy of blocking or redirecting blood-borne fungal cells to favor host defense mechanisms.
منابع مشابه
Adhesion of Candida albicans to endothelial cells under physiological conditions of flow.
Candida albicans is a commensal organism that under certain circumstances can become pathogenic. During systemic infection C. albicans is disseminated via the circulation to distant organs, where it causes multiple organ failure. Despite the severity of systemic C. albicans infection, little is known about the mechanisms involved in the adhesion of this organism to the endothelium lining blood ...
متن کاملCandida albicans Uses the Surface Protein Gpm1 to Attach to Human Endothelial Cells and to Keratinocytes via the Adhesive Protein Vitronectin
Candida albicans is a major cause of invasive fungal infections worldwide. Upon infection and when in contact with human plasma as well as body fluids the fungus is challenged by the activated complement system a central part of the human innate immune response. C. albicans controls and evades host complement attack by binding several human complement regulators like Factor H, Factor H-like pro...
متن کاملComparison of the hydrophobic properties of Candida albicans and Candida dubliniensis.
Although Candida dubliniensis is a close genetic relative of Candida albicans, it colonizes and infects fewer sites. Nearly all instances of candidiasis caused by C. dubliniensis are restricted to the oral cavity. As cell surface hydrophobicity (CSH) influences virulence of C. albicans, CSH properties of C. dubliniensis were investigated and compared to C. albicans. Growth temperature is one fa...
متن کاملThe Effects of Candida Albicans Cell Wall Protein Fraction on Dendritic Cell Maturation
Back ground: Candida albicans is a member of the normal human microflora. C. albicans cell wall is composed of several protein and carbohydrate components which have been shown to play a crucial role in C. albicans interaction with the host immune system. Major components of C. albican cell wall are carbohydrates such as mannans, β glucans and chitins, and proteins that partially modulate the h...
متن کاملReal-Time Approach to Flow Cell Imaging of Candida albicans Biofilm Development
The ability of Candida albicans to form biofilms is a virulence factor that allows tissue attachment and subsequent infection of host tissues. Fungal biofilms have been particularly well studied, however the vast majority of these studies have been conducted under static conditions. Oral biofilms form in the presence of salivary flow, therefore we developed a novel flow system used for real-tim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 69 5 شماره
صفحات -
تاریخ انتشار 2001